\qquad
Date \qquad Period \qquad
Find the growth factor associated with the percent change.

Percent Change	45%	30%	90%	20%	200%
Growth Factor					

Explain in general, how you turn a percent change, into a growth factor.

Find the percent change associated with the given growth factor.

Percent Change					
Growth Factor	1.5	1.75	1.05	2	2.8

Explain in general, how you find the the percent change, from a growth factor.

Decide if each table is exponential growth or decay. To find the exponential growth or decay factor, divide each y-coordinate by the previous y-coordinate. Then find the growth or decay rate.

1. Exponential growth or decay?

Factor: \qquad Rate: \qquad or \qquad \%

x	1	2	3	4	5
y	6	18	54	162	486

2. Exponential growth or decay?

Factor: \qquad Rate: \qquad or \qquad \%

x	0	1	2	3	4
y	100	25	6.25	1.5625	.390625

\qquad Rate: \qquad or \qquad \%

x	0	1	2	3	4
y	$\$ 500$	$\$ 550$	$\$ 605$	$\$ 665.50$	$\$ 732.05$

4. Exponential growth or decay?

Factor: \qquad Rate: \qquad or \qquad \%

Supply of Trees

Year	0	1	2	3	4	5	6	7	8
Trees Remaining	10,000	9,502	9,026	8,574	8,145	7,737	7,350	6,892	6,543

5. Exponential growth or decay?

Factor: \qquad ; Rate: \qquad or \qquad \%

6. Exponential growth or decay?

Factor: \qquad ; Rate: \qquad or \qquad \%

x	0	1	2	3	4	5
y	$\frac{1}{16}$	$\frac{1}{4}$	1	4	16	64

Growth of
 Elk Population

Time (yr)	Population
0	30
1	57
2	108
3	206
4	391
5	743

CHALLENGE: Zak's wealthy uncle wants to donate money to Zak's school for new computers. He suggests three position plans. Write an equation for each plan, then determine which plan would Zak's uncle donate the most money.

Plan 1: He will continue the pattern in this table until day 12.

Day	1	2	3	4
Donation	$\$ 1$	$\$ 2$	$\$ 4$	$\$ 8$

Plan 2: He will continue the pattern in this table until day 10.

Day	1	2	3	4
Donation	$\$ 1$	$\$ 3$	$\$ 9$	$\$ 27$

Plan 3: He will continue the pattern in this table until day 7.

Day	1	2	3	4
Donation	$\$ 1$	$\$ 4$	$\$ 16$	$\$ 64$

