Operations on Vectors 15.3

The sum of two vectors is called the \qquad .

End to End method						y_{4}						
$\vec{u}=\langle 5,4\rangle$ and $\vec{v}=\langle 2,-9\rangle$, find $\vec{u}+\vec{v}$.						6						
$\vec{u}=\langle 5,4\rangle$ and $\vec{v}=\langle 2,-9\rangle$, find $\vec{u}+\vec{v}$.						5						
						4						
1. Position u and v so that the terminal						3						
point of u coincides with the initial point						2						
of v.						1						
2. The resultant vector, $u+v$, extends from	$\stackrel{-6}{ }$		-4-3	- -2	-1	$1{ }^{0}$		2	3	4	${ }_{56}{ }^{x}$	
the initial point of u to the terminal point						-1						
of v .						-2						
						-3						
						-4						
						5						
						\downarrow						
Component Wise method $\vec{u}=\langle 5,4\rangle$ and $\vec{v}=\langle 2,-9\rangle$, find $\vec{u}+\vec{v}$.												
1. Add horizontal components 2. Add vertical components												
						54						
$\vec{u}=\langle 5,4\rangle$ and $\vec{v}=\langle 2,-9\rangle$, find $\vec{u}+\vec{v}$.						6						
						5						
						4						
1. Draw both vectors starting at a common						3						
point, forming two sides of a						2						
parallelogram.						1						
2. Draw the other two sides.	$\stackrel{4}{-6}$	-5-4	-4-3	-2	-1	0	12	2	3	45	$\xrightarrow[6]{ }$	
3. Draw in a new vector from the common						-1						
starting point to the opposite vertex of						-2						
						${ }^{-3}$						
the parallelogram.						${ }^{-4}$						
						-5						
						\downarrow						

Magnitudes and Vector Addition

The magnitude of the sum of two vectors is not equal to the sum of the magnitudes of the two vectors $\\|u+v\\| \neq\\|u\\|+\\|v\\|$.	$\vec{u}=\langle 5,4\rangle$ and $\vec{v}=\langle 2,-9\rangle$, find
	$\\|u+v\\|=$
	$\\|u\\|+\\|v\\|=$

Subtracting Vectors

Multiply a vector by a scalar

We can stretch a vector by multiplying the vector by a scale factor. For example, $2 \vec{v}$ represents the vector that has the same direction as \vec{v}, but whose magnitude is twice that of \vec{v}.
If $v=\langle 5,4\rangle$ find:
$6 v$
and
$-3 v$

Scalar multiplication and magnitude

When multiplying a vector by a scalar the magnitude of $k v$ (k is the scalar, v is the vector) is the magnitude of the vector times the absolute value of the scalar.

Find the magnitude of
$6 v$
and
$-3 v$

