Operations on Vectors 15.3

The sum of two vectors is called the ______.

 End to End method <i>u</i> = (5,4) and <i>v</i> = (2, -9), find <i>u</i> + <i>v</i>. 1. Position u and v so that the terminal point of u coincides with the initial point of v. 2. The resultant vector, u+v, extends from 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
of v.	$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$
Component Wise method	
$\vec{u} = \langle 5, 4 \rangle$ and $\vec{v} = \langle 2, -9 \rangle$, find $\vec{u} + \vec{v}$.	
 Add horizontal components Add vertical components 	
Parallelogram method	<i>y</i> →
$\vec{u} = \langle 5, 4 \rangle$ and $\vec{v} = \langle 2, -9 \rangle$, find $\vec{u} + \vec{v}$.	5
1. Draw both vectors starting at a common	3
point, forming two sides of a	2
parallelogram. 2 Draw the other two sides	← -5 -4 -3 -2 -1 0 1 2 3 4 5 6
3. Draw in a new vector from the common	
starting point to the opposite vertex of	
the parallelogram.	-4
	→

Magnitudes and Vector Addition

The magnitude of the sum of two vectors is not equal to the sum of the magnitudes of the two vectors $ u + v \neq u + v $.	$\vec{u} = \langle 5, 4 \rangle$ and $\vec{v} = \langle 2, -9 \rangle$, find u + v =
	u + v =

Subtracting Vectors

The difference of two vectors, v-u, is v+(-u). –u is the opposite direction of u.	y 6 5 4 3 2 1 1
	-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -1 -2 -3 -4 -5

Multiply a vector by a scalar

We can stretch a vector by multiplying the vector by a scale factor. For example, $2\vec{v}$ represents the vector that has the same direction as \vec{v} , but whose magnitude is twice that of \vec{v} .

If $v = \langle 5, 4 \rangle$ find: 6v and -3v

Scalar multiplication and magnitude

When multiplying a vector by a scalar the magnitude of kv (k is the scalar, v is the vector) is the magnitude of the vector times the absolute value of the scalar.

Find the magnitude of 6v and -3v