\qquad
\qquad
\qquad

14.1 Points, Lines, Planes and Intro to Quads

Name each point, line segment, line, or ray.
1.

2.
3.
$\stackrel{\rightharpoonup}{\mathrm{S}}$

$\stackrel{\ominus}{\mathrm{T}}$
4.

5.

6.

Draw and label each of the following.
7. $\overleftrightarrow{A B}$
8. Points C and D
9. $\overleftrightarrow{J K}$

Identify each figure as parallel, perpendicular, or neither. Include the type of slope each would have
10.
11.

12.

Draw and label each of the following.
13. $\overleftrightarrow{\mathrm{LM}}$ intersects $\overleftrightarrow{N O}$ at point P
14.
.$~ \overleftrightarrow{\mathrm{HI}}$ is perpendicular to $\overleftrightarrow{J K}$
15.
$\overleftrightarrow{\mathrm{RS}}$ is parallel to $\overleftrightarrow{\mathrm{TU}}$

Fill in the blanks:
16. Through any two points there exists exactly one \qquad .
17. A line contains at least \qquad points.
18. If two lines intersect, then their intersection is exactly \qquad point(s).
19. Through any \qquad noncollinear points there exists exactly one plane.
20. A circle is created by connecting all the points \qquad from the center.
21. On a circle, the distance from the center to ANY point on the "ring" is called the
\qquad _.

Refer to the figure below for questions \# 22-31:

True or False:

22. Points Q, P, and L are on the same plane, even though it is not shown.
23. Points K, L, and Q are on the same line.
24. The intersection of $\overrightarrow{Q P}$ and Plane R is point J.
25. Let J be the center of a circle with a radius of JL. This circle intersects both planes.
26. Points Q, J, and N form an angle named $\angle J L Q$.
27. Line LN lies in Plane R.
28. Point M is on the edge of Plane R.

Answer these questions:
29. The answer to \#22 is TRUE. Why? \qquad
30. The answer to \#28 is FALSE. Why? \qquad
31. The answer to \# 26 is FALSE. Why and what is the correct name of the angle formed?

True or False

32. Two points determine two lines.
33. Two planes always intersect in a line.
34. If two distinct lines intersect, they always intersect at a point.
35. Three points determine a plane.
